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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2787 : !

ATRFOTL PROFILES FOR MINIMUM PRESSURE DRAG AT SUPERSONIC
VELOCITIES - APPLICATION OF SHOCK-EXPANSION THEORY,
INCLUDING CONSIDERATION OF HYPERSONIC RANGE

"By Dean R. Chapman
SUMMARY

A theoretical investigation is made of airfoil profiles at supersonic
velocities to determine the shapes having minimum pressure drag at zero
1ift for various given auxiliary conditions., Shock-expansion theory is
employed, thereby extending the applicability of the results through the
hypersonic range. Curves are presented for Mach numbers of 1.5, 2, 3,
h; 6, 8, and o which enable the shape and the drag of an optimum profile
to be determined readily if the base pressure is known from experiments.
Examples are presented of optimum profiles determined with the aid of
experimental base pressure data. Variations in profile shape are inves-
tigated to provide information on the degree to which deviations in
shape from the optimum can be made without resulting in a significant
drag increase.

A comparison of optimum profiles determined by the shock-expansion
method of this report with corresponding profiles determined by the
linearized-theory method of a previous report shows only small differ-
ences in shape at Mach nunters up to infinity even though the linearized
theory at high supersonic Mach numbers breaks down completely insofar as
the drag of the profile is concerned. The experimentally observed
dependence of base pressure on trailing-edge thickness is found to have
a significant effect on the shape and drag of optimum profiles of small
thickness ratio. Curves are presented which show that for thin airfoils
the use of a trailing-edge thickness considerably greater than the theo-
retical optimum can result in an excessive drag penalty at moderate
supersonic Mach numbers, though not at hypersonic Mach numbers.

INTRODUCTION

In 1933 Saenger observed that for the extreme case of fiow at
infinite Mach number an airfoil designed to have minimum pressure drag
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would have its maximum thickness at the trailing edge. (see refer-

ence 1.) A related result can be inferred from the numerical calcula-
tions of Ivey (reference 2) which indicate that the drag of a 10-percent-
thick-wedge airfoil at a Mach number of 8 is less than that of a double-
wedge airfoil having the same thickness ratio. In both of these cases
the desirability of employing a thick trailing edge in conjunction with
a small surface slope may be attributed to the fact that at hypersonic
Mach numbers the suction forces (forces due to pressures below ambient)
are small compared to the positive pressure forces, even when the suction
force corresponds to a vacuum, Recently, Smelt (reference 3) has dis-
cussed this latter characteristic of hypersonic flow and its possible
application to the determination of efficient airfoil shapes for use at
very high Mach numbers, The investigations of Saenger, Ivey, and Smelt,
however, do not provide general quantitative information on the airfoil
profile having minimum pressure drag in hypersonic flow because of two
limitations of their snalyses: Airfoils having a trailing-edge thickness
less than the maximum airfoil thickness were not considered, and the
airfoil structural characteristics were not considered (comparisons were
made on the basis of a given airfoil thickness). '

At low and moderate supersonic Mach numbers the suction forces on
an airfoil can amount to several times the positive pressure forces,
particularly if an excessively thick trailing edge is employed. As a
result, the optimum trailing-edge thickness in this lower Mach number
range depends to a great extent on the base pressure. By presuming that
the base pressure is known from experiments, and that the airfoil profile
must satisfy a given structural requirement (such as a given section
modulus or a given section moment of inertia), a method of calculating
the profile of minimum pressure drag at zero 1lift has been developed by
the present writer in reference 4. Although the basic equations devel-
oped in reference L for calculating such profiles are applicable to
higher-order theories, a detailed solution was given only for the case
of linearized supersonic flow.: : S

Because of the well<known shortcomings of linearized theory, it was
thought worthwhile to conduct an investigation parallel to that of
reference L in which the shape and drag of optimum airfoils are determined
from shock-expansion theory instead of -linearized theory. Shock-expansion
theory appears adequate for this purpose, particularly in view of the
recent investigation of Eggers and Syvertson (reference 5) which indicates
that shock-expansion calculations accurately determine surface pressures
on thin airfoils in inviscid flow at Mach numbers from just above that
for bow-wave attachment to infinity. From the viewpoint of the engineer
who always has to make design compromises, it was thought desirable in
the present study also to determine how much the optimum-profile shape
can be altered, especially near the trailing edge, and still not increase
the drag excessively. The purposes of the present investigation, there-
fore, were (1) to develop a usable method for determining the shape and
drag of optimum profiles in the Mach number range beyond that covered
adequately by linearized theory (step-by-step details involved in applying
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the method developed are given in an appendix), and (2) to determine
curves showing the rate at which the total pressure drag increases as
the profile shape deviates from the optimum.-
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NCOMENCLATURE

airfoil chord

pressure drag coefficient
constant depending on 7y
trailing-edge thickness

‘ . /h
dimensionless trailing-edge thickness \?3)

. 1 r i1 int ‘1 iﬁ: A dx}
iven value O1 auxliitiiar integra . ———— T

dimensionless value of I [?E7§75:E
normalizing factor for &(Y), defined by equation (10)
length of surface of constant thickness | N
dimensionless length of surface of constant thlckness \ )
Mach number

parameter appearing in definition of I

pressure

total pressure

- pressure coefficient ({——-—-E%j

7o
Reynolds number

chordwise distance from leading édge to first downstream position
of maximum thickness

maximum thickness of airfoil

velocity

chordwise distance from 1eading'edgéfto point on airfoil surface




e(Y)

n(Y)

- free stream
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ordinate of ufper surface of airfoil ‘ .
dimenéionless diétance </§>
~dimensionless distance <F37r§>
ratio of specific heats'(l.hoifor air)
arbitrary constant
‘mass density

local angle of inclination of airfoil surface with respect to
chord line (tan™ly')

characteristic'function determining optimum-profile shape, defined
by equation (9)-
characteristic function \defined by equation (12)

Subgcripts

airfoil surface at leading edge

airfoil surface at trailing edge

o

base, or trailing edge, o. airfcil

cirsﬁlar-arc biconvex airfoil ﬁaving sharp trailing edge
Supers;ripts

differentiation with respect to x
1 ,ANALYsIs

Solution for Arbitrary Structural Requirement N

As in reference L, it is assumed throughout this analysis that the
optimum airfoil has a‘sharp leading ‘edge, a fixed chord length, and is
set at the zero-lift angle. It also is assumed that the flow is a . -
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purely supersonic two-dimensional flow of an inviscid, nonconducting,
perfect gas, Since the surface pressures on the top and bottom of an
airfoil can be calculated independently in a supersonic flow, it follows
that at gero 1ift the optimum profile will be symmetrical about the
chord line. The mathematical problem formulated is to find the alrfoil
ordinate function y(x) which minimizes the pressure drag,

2 C h
cd=gj(')Py' dx - Pb 3 (1)

for a given value of the auxiliary integral

e | | |
< b ™ @

By gelecting various values of the parameters n and o, a wide variety
of structural requirements can be represented for both thin-skin and
solid-section structures. Some of the different structural criteria
represented by equation (2) are:

n o Structural criteria

1 O | given torsional stiffness, or torsional strength, of
thin-skin structure (given cross-section area)
0 given bending stiffness of thin-skin structure

3 0 | given bending stiffness or given torsional stiffness of
solid-section structure

2 1 | given bending strength of thin-skin structure

given bending strength of solid-section structUre

Basic equations.- The equations whlch the optlmum-alrf01l ordinate
function y(x) must satisfy can be obtained by considering an infinitesi~-
mal variation in profile shape 8y(x) that is arbitrary except for the
requirement that &I = 0. By also requiring that 6cd 0 the follow1ng
three equations result (see reference L): ’

'gx P+Y'—">+xny =0 RN C)
Pp =P 47y <§> W

) \
Lot @eyepy )

In the derivation of these equations it was assumed that P = P(y', yo', Mo 5
but no particular functional form was assumed. Equation (3)_is the differ-
ential equation which the airfoil ordinate function y(x) must satisfy along
the curved surfaces, for example, OA and BC in figure 1. A first integral
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of this diffevential equation, satisfying the condition y' = 0 at
¥y = t/P, can be obtained by multiplying both sides by y' and 1ntegrat1ng.

., |
,Y'Esgv‘ L) - (32)

Equations (3) and (3a) involving the arbitrary constant » do not apply
to the straight midsection (AB in flg. 1) along which the airfoil thick-
ness is constant. Equation (L), termed an end condition, represents the
relation which must be satisfied between the base pressure coeffi-

cient Pp, the surface pressure coefficient Py Just upstream of the
trailing edge, and the corresponding surface slope y1'. As will be
seen this equation determines the optimum trailing-edge thickness.
Equation (5) relates the optimum length of straight mldsectlon 1 to
the dimensionless value of the structural integral T. This latter
equation shows that the length of straight midsection is always zero
when the auxiliary condition represents a given stiffness (¢ = 0), but
for the values of n considered is a sizable fraction of the chord
when the auxiliary condition represents a given strength (c = 1).

. - Solution for Y, H, and X.- From equation (3a) the constant A is
readily evaluated in terms of yo'. There results .

P | o
at/2y ay o (3p) .
By employing the dimensionless varlables = y/(t/2) and H = h/t,
equations (3a) and (3b) yield o : _ :
o 12 BP/ay') _ ‘
v o= vy ( . A (6)
- ¥o'Z(3P/3y")o : ‘
ana heﬁce N ; N
| Hn = l - 2(6P/ay )l » A (7)

'2(5P/8y Jo

It is to be noted that the structure of these equations, and all sub=-"
sequent ones, is such that the quantities Pp, I, and M, which are pre-
sumed to be given do not appear as independent variables. Instead, they
are related parametrically to the shape and drag of the optimum profile
through the parameter 7y'. For example, equation (7) gives

H(yl » Yo's M), and equatlon L gives Pyp(yr's Yo', M «)s hence by select-
ing arbitrary values of y;' the function H(Pp, yo', My) can be deter-
mined. Moreover, as will be seen later, I depends on Yo', My, and H,
so that the parametric structure of the equatlons ultimately yields the
de31red function H(Pb, I, M).

, The dlfferentlal equatlon (3a) and the approprlate boundary condi-
tions y(0) =0, y(s) =t/2, and y(s + 1) = t/2 determine x as a
function of 'y by a single quadrature, o
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y F‘jT‘"‘ on
JF oP/dy’ dy _ , . upstream
o A/zt;an - yu surface

er % ‘jp V[BP/BY' dy .

A j Y STt ay o om

JA (s + 1) + = downstream

{ t/2 ™ (t/2)* - ¥ surface
The algebraic sign to be selected for each radical is determined by the
requirement that x increases as y increases on the upstream surface,
and ag y decreases on the downstream surface. The above relation is
more conveniently expressed in terms of the dimensionless quantities

Y = y/ t/2), x/s, and L = Z/s. After eliminating o/ A by evaluating
the above 1ntegral at x = s, there is obtained for the dimensionless
shape . :

E(Y) - on upstream surface
X = | 1 (8)

L + &(Y) on downstream surface

where &(Y) is defined as the quotient of two integrals’l

fﬁ v 3p/oyr av// 1 - I8
folJ OP/dyr ay/W 1 - yn

The definite integral which normalizes E(Y), such that §(1) =1, will
for sake of brevity be designated by Jjp. Thus

, _/ /op ay - o ‘(1"0")
Jn_O ay' /1 - yi T
Actually, for completeness the function §(Y) should be written as
8(Y; My, n, yo'!) because it depends on the three quantities My, n, and

Yo' as well as the variable Y. For brevity, though, it is written
simply as” &(Y). '

£(Y) =

(9)

Since x 1is a double-valued function of y over the chord length,
¢(Y) is also a double-valued function of Y., A sketch of a typical
curve of Y versus £ 1is shown in figure 2. For a given dimensionless
ordinate Y, one of the two values of £ represents the dimensionless
chordwise distance from the leading edge to a point on the upstream
surface, whereas the other value represents (apart from an additive N
term L) the dimensionless chordwise distance from the leading edge to
the point on the downstream surface which has the same ordinate Y. It

is to be understood that in determining X from equation (8) the appro-
priate value of &(Y) must be used for each surface; thus, for a given Y

1gince the integrands are singular at the point Y = 1, numerical compu-
tations of the function &(Y) must allow for this singularity. A
simple method of doing this is outlined in appendix A.
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the value of E(Y) appropriate to the downstream surface always is
greater than for the upstream surface.

From the foregoing and the fact that &(Y) is independent of Py
and o, it follows that a curve of Y versus &(Y), such as is illus-
trated in figure 2, determines the curved portions of an infinite number
of optimum profiles, all having the same values of Yo', My, and n. It
may be noted that o (equation (5)) essentially determines the length
of straight midsection which is to be placed between the two curved
portions after separating them at the point where Y =1 (point AB in
fig. 2); whereas Pp (equations (4) and (7)) essentially determines H,
the value of Y beyond which the downstream portion of the curve is not
used in a given case. It is noted that although the chord is fixed,
the value of £ corresponding to the trailing edge is not. This is
because & = x/s changes whenever g changes.

As may be deduced from equation (7), yi' determines H for a
given n, My,and y,'. Moreover, y,' determines Pp from equation (k).
Hence, for any given value of base Pressure the point on the downstream
surface which corresponds to the trailing-edge position can be indicated
on each §(Y) curve. (See Pig. 2 where the point corresponding to zero
base pressure is indicated.) : '

Solution for L, I, t/c, and s/c.- Turning now to the determination
of the optimum length of straight midsection 1, one sees from equa-
tion (5) that such a determination will also give T. Since 1 is a
function of yo' and the given quantities n, o, Py, and M,, this
enables . yo', the quantity used as a parameter in the present analysis,
to be related to the quantity T, which is a more convenient one to use
if I is the actual quantity given. Starting with the definition of T

the following equations result: .
T =1/(t/2)2C
_ B ¢C n _ 8 /s n
=2 ax = S0 - (1 - Y] ax

#

s|e H ' ny 4X
c[s-j;) (l_Y)deY:’

or, by using the relation

o ax 1 /op/dy I
' Ay gpv 1 - YR N

which follows from equations (8), (9), and (10), there results

1-T 1 oF

s/c  on o oy

(1 -7Y) ay



NACA TN 2787 , , ' -9

For convenience the right-hand member of thls equation  is defined
as n(H). |

H ,
n(H) = f a ' (1 - Y% ay ! (12)

From equations (8) and (5),

+ &(H)

¢
8

Bla

.
< T+ &(8)
Combining this with the above relation between T and s/c‘ gives

ne-ao

nt(R) - on(d) (13)

S-—
c

and

T = ¢(H) - n(H) ' » (14)
£ (H) - = n(H)

Recalling that H 1is determined by Py for a given E(Y) curve (given
Mo D, ¥o'), one sees that equation (14) determines T as a function

of Mg, n, 0, Py, and y,'. A convenient determination of I, of course,
can only be made if the function n(H) in addition to E&(Y) has been
computed., The function n(H), which for completeness should be written
as nN(H; Mgy D, ¥o'), is somewhat easier to compute than &(Y) since it
is not singular at Y = 1, Attention is called to the fact that all the
above integrals with limits ranging from Y = O to Y = H, as in equa-
tion (12), for example, really correspond to integration over both
curved surfaces, first from Y = 0 to Y = 1, and then from Y=1 to Y = H.

With the position‘of maximum thickness determined by équation (13),
the maximum thickness ratio can be determined in terms of the surface
slope at the leading edge.

_ 28 fay) ‘
t \dx/o
o
c (dY/dX) ]
or, from equation (11), in an alternate form ' o "
__2<> /ay ~ (159)

Calculation of pressure drag of an optimum profile.- In reference 4
it was shown that for linearized supersonic airfoil theory the pressure

(15)
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. drag coefficient of an optimum profile was a simple algebraic function
of certain quantities such as H and s/c. Since these quantities are
known once the shape of the optimum profile is determined, a separate
integration is not required in order to calculate the pressure drag.
Fortunately, a similar algebraic relation can also be developed for the
present case., In so doing, integration by parts is employed starting

. with the defining equation for pressure drag.

h

. ‘h n h
%Cd = fo/2 de - Pb§= P]_E -é' ydP - Pb'e- (16)

Al

In these equations, and subsequent ones, the integration is carried out
only over the two curved portions since the straight midsection can con-
fribute no drag. From equation (3a),

)R
= -2 [(£/2)" - ( >

hence, substituting into equation (16) and again 1ntegrat1ng by parts
glves : ,

o3 on e ()] AL R

AE . [(6/2)" - (o + 1)) ax
s+l , , ‘ : :
The first bracketed term on the right side vanishes by virtue of equa-
tion (L4). The remaining integrals can be simplified by noting that
I ‘p_

= 1/ & _
Fl oy @ ¢ =0 and x(t/é) vo' (557

There results

Qe

\ -
cq 2Y52<}?2TJ [(n+1-0)T ~1] (17)
: ' AT . :
This equation enables the pressure drag to be readily calculated if the
base pressure is given, since P, determines H for a given Yo' and
M., and H determines T in accordance with equation (1k). Thus,
.equation (17) involves the base drag implicitly, but not explicitly.
For the special case of linearized supersonic flow,. |

L YN ST

and the above equation for cg can be shown to reduce to the correspond-
ing equation for pressure drag developed in reference kL. :
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Closed-Form Solution for the Special Case of Given
Cross-Section Area n =1, 0 =0

When the cross-section area of a profile is prescribed (n =1,
o = 0), corresponding to a given wing volume, torsional stiffness, or
_torsional strength of a thin-skin structure, then the differential
equation (3) can be integrated immediately with respect to x to yield
a solution in closed form for the airfoil shape. There results

-xXx =P 4+ y! %57 + constant (18)

The constants can be eliminated by evaluating this expression at x =0
'and x = 8 to obtain

P + y'(3p/dy') - P(0)
P, + yb'(BP/By')o - P(0)

g-ax- EY) = 1 - (19)

Here P(0) is the pressure coefficient at y' = 0, and Po 1is the
Pressure coefficient at x = 0. For practical purposes P(o) usually
can be taken as zero, although strictly speaking it should be regarded
‘as a small quantity compared to Py + yo'(OP/dy')y. The parametric
equations for Y and H in terms of y' are the same as before, only
with n =1, - C

M < A o
LT =
go . Y2l r/y), (21)

yO' 2(8P/8y' )O

The general equation for the base Pressure coefficient does ndtiinvolve
and hence is the same as before. ‘ '

_ ar ' : -
L Y 'a?)l | W

The constant in equation (18) can be evaluated at x = c instead

n,

of at x = s. Combining such an evaluation with the above equation for - Py

yields the alternate expression

el ]

Po + Yb'(aP/aY')o -Pp

which involves Py instead of P(0). The equations for t/c, s/c, and

can be derived easgily from the Preceding equations., Omitting algebraic

details, the following results are obtained:’

= 1. L +vyv(5P/ayr) _ Py | : | (égjm

¢4
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By evaluating equation (18) at x = ¢, and combining with equations (3b)

and (L),

Ofct

- - 2¥0"(3p/3y")g (23)
Po + yo'(aP/aY')o - Py ’

by evaluating equation (22) at x = s,

c Po + Yo' (9B/3y")o - Po - (2)

and by substituting n =1 and 0 = O into equation (17),
- 2/(p -~ ' -
ca -2 30" (&) (T -1) (25)
Y /0 _

Solution fér the Special Case of Given Thickness Ratio
' n = e, 0 = finite

In reference 4 it.was shown that the limiting values = 00,
g = finite, represent the auxiliary condition of a given airfoil thick- '
ness ratio. The mathematical simplification inherent in the use of
approximate theories such as linearized flow enables the solution for
a given thickness ratio to be obtained directly by passing the general
solution to the limit as n->w, For shock-expansion theory, though,
a general solution in closed explicit form cannot be obtained, and
recourse to the alternate method indicated in reference L is required.
This alternate method deals directly with the appropriate differential
equation, which, for the case of given airfoil thickness, becomes simply

yrF e = constant . (26)
oy!
which is satisfied by a profile composed of any number of straight seg-
ments. As shown in reference L, the constant in the above equation does
not change over the entire chord, with the result that the upper halfl
. of the profile forward of the trailing edge is composed of two straight
lines, one extending from x =0 =Y tox =18, % =+/2, and the other
extending from X =8, ¥ = t/2 to the trailing edge x = ¢, ¥ = h/2.
The slope is discontinuous at the.point'where Yy o= t/2; To obtain a
solution using any given airfoil theory, it is necessary to satisfy the
differential equation (26), the end condition (4), and the boundary
condition of a fixed thickness ratio.

_ Equation (17) for cg pecomes indeterminate as n-—>« because
T-30. TFor this case, however, the shape is known and the pressure drag
“can be determined from simple physical considerations:

= 2 lp, - Fy(1 - H) - PpH]

(cd)given t/ec
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APPLICATION OF ANALYSIS

Flow at Infinite Mach Number

Prior to considering shock-expansion theory, the relatively simple
case of flow at infinite Mach number over slender airfoils with small ’
gurface curvature will be considered. For such conditions the pressure
coefficient on a surface facing upstream is p“oportional to. the square
of the local surface slope, that is, P = Cy'z. Since the pressure coef-
ficient is zero on any surface facing downstream it follows from physical
considerations that H = 1. Equation (4) is satisfied by requiring that
y1' = 0. By consideration of the differential equation (3a) as special-
ized to the present case it follows that

%12'.‘ =y 2cy' = (2c)1/:3 [x <3:2->n:| 1/6(1 - Yn)l/s

By substitution into equation (9), and employment of gamma functions to
evaluate the integral in the denominator, there results

nI‘(g +-l> _
£(Y) = ——7—51——42—~k/ﬁy(1 -y Moy (27)
! I'(5i> F(;%i) o} : . ‘ o

The function Y versus £(Y) is plotted in figure 3 for n =.1, 2, 3, and e.
The infinite value of n corresponds to the auxiliary condition of a
given thickness ratio, and the optifmum profile in this case is a wedge,

since %I‘(%) >1 and E(Y)>Y as n->w. It is seen that there is
1little difference between the three curves for finite n.

The other characteristic function needed for the complete determina-
tion of an optimum profile is n(H). By substituting H = 1 in equa-
tions (12), (13), (14), and (17), and employing equations (5), (10), and
(28), the following expressions are obtained:

n(1) =§g2-_%-3- (28)
s_(a-0)(ns3) (@)
c n(2n+ 3 - 20) : :
o | o
I =32 (30)
-1 30 ‘ Co .
c  n(en + 3 - 20) (31)
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Y T [T TEE LS
cd=hcyo‘3-(2n(i;f’_)20) o (33)
ONORE o @ oo (30

o r@ . D (20 + 3 - 20)

If desired, this last equation for the pressure drag coefficient can be
written in terms of I instead of t/c, jnasmuch as I is related to
the thickness ratio through equation (32). It should be noted that the
above equations relate in closed form all pertinent properties of the
optimum profile to the given quantities I, n, and o. FExamples of opti-
mum profiles determined with the aid of these equations are presented

subsequently.
Shock-Expansion Theory

When the oblique shock-wave and Prandtl-Meyer equations are combined
to calculate the pressure on an airfoil surface in supersonic flow, the
resulting equations for P are quite involved. The appropriate equa-

" tion for OP/dy', however, may be obtained by starting with the local
differential relation . ~

— 2

%‘-pVg B M2 - 1

2 = - (39)

This point relation is formally the same as the corresponding relation
applied throughout an entire flow field in linearized supersonic airfoil
theory. The partial derivative dp/3d is taken with Mg and o held
constant. Expressing equation (35) in terms of the pressure coefficient
and free-stream conditions, —_

o o 2
" Pl A M2 - 1

or, since

there results
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This equation appears fairly simple, but is not in a form which can be
computed readily with the aid of existing tables where quantities such
as local pressure ratio p/pt and total-pressure ratio across a shock
wave Pt/Pt,, are tabulated. Thus, a more convenient form for calcula-
ting purposes is :

P 2 M2 /Mz-l (p/pt) (Pt véz
oy' M2 -1 [an —1?2— -1 (‘pm/ptm)‘ <ptw>é0 5] (36)

From this equation a numerical value of BP/By' can be determined'from
tabulated oblique-shock and expansion characteristics once yo's; Mg
and the local slope 7y' are specified. ' : ‘

The functions &(Y) and n(H) have been calculated for shock-
expansion theory by substituting equation (36) into equations (9) and (12),
regpectively, and then performing the indicated integration graphically
by the method outlined in appendix A, 1In this process other useful
quantities are calculated such as (3P/dy*')o and jn. The results are
presented in figures k4, 5, 6, and 7. .In figure 4 the quantity

(3B/3y" )/ (/WM - 1), which is equal to (ap/ay:)o/[(ap/ayv)o’]afbo,

ig plotted as a function of By for various values of M. Similarly,
jn/(jn)80=00 is plotted in figure 5. It is to be noted

1
X 2 ’
( Jn)ﬁo: OO = f day 2kfl

NMZE - 1% 1 -1 JSM2-1

where

2 forn =1 | :
ky = {n/2 for n =2 ' (37)
1.4023...for n = 3 ' ‘

Curves of B versus 8o for various values of base pressure are pre-
gented in figure 6, from which it is apparent that the dimensionless
trailing-edge thickness increases if either the airfoil thickness
increases (® increases), or if the base pressure increases. In figure T
the functions &(Y) and n(H) for various 8p,My,, and n are presented
plotted in the form Y versus €, and H versus n. The curves of Y

versus ¢ determine the shape of the optimum profile, while the curves.

of H versus 1 are useful in determining I, s/c, and t/c. Many of the
curves of Y versus & have been terminated at the point (indicated by
small circle) corresponding to zero base pressure,

EXAMPLES AND DISCUSSION

In order to determine an optimum profile it is necessary, of course,
to know the base pressure. Experiments have shown that base pressure in
two-dimensional flow depends principally on the Mach number, type of




16 ‘ ' o NACA ™ 2787

boundary-layer flow, and the boundary-layer thlckness at the base, ' K
(See reference 6,) - Average experimental values are shown in flgure 8
for both laminar and turbulent flow plotted as a function of the parame-
ters proportional to the ratio of boundary-layer thickness to trailing-
edge thickness. Step-by-step details of the method of determining an
optimum profile by combining experimental base pressure data with the
curves of figures h to 7 are given in appendix B

In figure 9 examples of optlmum profiles determined by the theory
of the present report are shown together with corresponding profiles
determined by linearized theory (reference L4). For each of the various
auxiliary conditions the particular value of I selected for these
examples is equal to that for a circular-arc biconvex airfoil of thick-
ness ratio teg/c = 0.06. Since

L 2%(nt) (tea/2)" "
ca =~ (2n + 1)1

(see reference L), it follows that with ¢ = 1 the optimum profiles in
figure 9 correspond to the value

_ 2°%(n1)%(0.03)""° | |
/ (2n + 1)! .
The auxiliary condition for n = w (fig. 9(d)) corresponds to a given
maximum airfoil thickness of 0.06c. As indicated in figure 9 (and also C

in subsequent figures of this report), the base pressure for Me = 1.5

and Mg = 3. O corresponds to turbulent boundary-layer flow at a Reynolds
number of 107. Since h is involved in the abscissa of figure 8, due
allowance is made for the variation of base pressure with tralllng-edge
thickness. Because base pressure data are not available as yet for

Mg = 8, a constant value has been assumed (pp = 0.1 p,) which is believed
to be reasonable for a moderately thick trailing edge (h/c ~ 0.05 or more),
but probably greatly overestimates the base drag for a thin trailing edge
(h/c ~ 0.01 or less). For Mg = ®, it is not necessary to know the base
pressure since the optimum proflle at this limit is 1ndependent of Dp.

. In figure 10 examples are _shown for various values of I with
M = 3, n =3, and ¢ = O. Tnstead of specifying the value of I in each
case, the thickness'ratio of a structurally equivalent circular-arc
biconvex airfoil is specified, as the significance of this latter value

is eagier to visualize, As would be expected, there is no appreciable
difference between the proflles determined by linearized and shock-
expansion theory when the value of I is small (tca/c = 0,02, for
example), although differences are evident for larger values of I

(tea/c = 0.04 and larger).

For each of the examples shown in figures 9 and 10, it is to be
noted that in comparison to the profile determined by linearized theory,
the corresponding optimum profile determined by shock-expansion theory
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has a smaller slope over the portion of surface facing upstream, a
position of maximum thickness farther aft, and a greater slope over the
portion of surface facing downstream. This difference which increases
with increasing Mach number is to be expected, as indicated in refer-
ence 4, because the linearized theory overestimates the suction forces
and underestimates the positive pressure forces. h

As regards drag coefficient, it is evident that drag calculations
based on linearized theory cannot be used at hypersonic Mach numbers
gince the computed coefficient approaches zero as the Mach number
increases., Also, it is to be remembered that linearized theory is con-
siderably less accurate in predicting the drag of blunt- trailing-edge

- airfoils than of sharp-trailing-edge airfoils, since the Busemann second-
order terms for the upstream and downstream surfaces do not cancel as
they do when the trailing edge is sharp.

If shock-expansion theory is used to calculate the drag of the pro-
file determined by linearized theory, the resulting value is only slightly
greater than the drag of the same profile determined by shock-expansion
theory. In order to put this idea on a more firm quantitative basis,
the case of infinite Mach number can be considered, as the differences
between profiles determined by linear and nonlinear theory are the
greatest at this limit. (See examples in fig. 9,) By use of the expres-
sion P = Cy'? +to calculate the drag of the profile determined by linear
theory, and dividing by the drag calculated correspondingly.for the pro-
file determined by nonlinear theory, the following expression results:

k; 2 n+2-g 2 1.08 for n=1,0=0
n - 2 1 1.06 for n=2,0=0

2 - - J
16(n+1) [(n+2)(2n+3-20)] n(2n+3)1"<3 + !1) _ 1,07 for n=g,0=1

3 o 1 .04 for n=3,0=0
[2(2n+3'-20):| n-0 r <‘3‘> r (‘ﬁ)

R

.05 for n=3,0=1
3(n+2-0) .00 for n=e,0 finite

(38)

It is seen that at infinite Mach number the actual pressure drag of an
optimum profile whose shape is determined by linearized theory does not
exceed the drag of the true optimum profile by more than about 8 percent,

If consideration is given to the consistent differences noted earlier
between the shapes of optimum profiles determined by linear and nonlinear
theory, it is evident that linearized theory can be used with good
accuracy to determlne the optimum profile at any supersonic Mach number
up to 1nf1n1ty. Even without considering the consistent difference noted
above, the profile determined by linearized theory is sufficiently accurate

- for most engineering purposes. Under less general conditions a similar
2As indicated in reference L, however, the linearized theory does not
“ yield a reasonably accurate proflle at the low supersonlc Mach numbers

near or below shock detachment.’




18 o | - NACA TN 2787

result also has been found in the recent investigation of Klunker and
Harder (reference 7) which appeared while the present report was being
prepared. The shape of some of the optimum profiles detevmined in -
reference 7, however, does not agree with the shape of analogous profiles
in this report. For example, it is indicated in reference 7 that the
profile of least drag for t/c = 0.06 has a sharp trailing edge at all
Mach numbers below about 6, whereas the corresponding profiles shown in
figure 9(d) indicate apprecismble trailing-edge thickness even at Mach
mmbers of 1.5 and 3, This discrepancy is attributed to the arbitrary
base pressure curve assumed in reference 7 which does not correspond to
measured data for thin trailing edges.

-From an engineering viewpoint it is desirable to know how much lower
the drag of an optimum profile is than that of a sharp-trailing-edge
profile, and also how much the optimum profile can be altered without
significantly increasing the drag. In order to provide a basis of com-
parison, the zero-lift pressure drag of a family of sharp-trailing-edge
circular-arc biconvex airfoils of various thickness ratios has been
calculated by shock-expansion theory for the Mach number range between
1.5 and 8. The results are shown in figure 11. Thus, for any profile
the drag of a structurally equivalent (same value of 1I) circular-arc
biconvex profile can be determined readily from the curves in figure 11
by simply calculating tea from the equation .

I = Iea = 227(01)(50e/2)370/(2n + 1)1

Computations of drag have been made for a family of "semioptimum"
profiles having arbitrarily selected values of trailing-edge bluntness H,
a shape forward of the trailing edge that yields minimum foredrag for each
particular H, and the same value of I as a circular-arc biconvex pro=-
file of thickness ratio tca. These calculations have been carried out
for tca/c = 0.02, 0,04, 0.06, 0.08, and 0.10 at Mach numbers of 1.5, 3,
and 8, and for various combinations of n and o. As in previous ’
examples, the base drag in each case was determined from the curves of
figure 8 for turbulent-boundary-layer flow at Re =.107, The results are
shown in figure 12 plotted in the form of a drag ratio versus H. Each
curve corresponds to a constant value of I, and is identified by the
thickness ratio (tca/c) of a circular-arc biconvex profile having the
same value for I. In order to maintain a constant value of I, the
actual thickness ratios C@é) of the semioptimum profiles change somevhat
as H varies between O and 1 (the ratio t/tes 1lies between about 0.90
and 1.05 for the case n =1, o = 0, between about 0.71 and 0.84 for
n=2, 0 =1, and between about 0.97 and 1.08 for n = 3, ¢ = 0). For
each curve in figure 12 the semioptimum profile having the minimum drag
coincides with the optimum profile determined from the curves of fig-
ures 5 to 8. The ordinate of each minimum point indicates the relative u
drag of the optimum compared to a structurally equivalent circular-arc
biconvex profile, while the rise on each side of the minimum indicates
the drag penalty resulting from the use of too much or too little "
trailing-edge thickness. It may be noted that some of the curves do .not
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cover the complete range of values of H. 1In all such cases, however,
sufficient calculations were made so that the minimum point was bracketed.

Perhaps the most significant feature apparent from the curves of
figure 12 is the large increase in drag that results for thin airfoils
when a trailing-edge thickness considerably greaster than the optimum is
employed at moderate supersonic Mach numbers. The pressure drag of full-
blunt profiles at Mach numbers of 1.5 and 3 for the case tca/c = 0,02 is
several times the pressure drag of the optimum, the exact factor varying
between about 2.8 and 3.9 depending on M, n, and o. On the other
hand, for thicker profiles (teg/c & 0.08) the pressure drag is much less
sens1tive to variations in trailing-edge thickness about the optimum,
and the use of a full-blunt profile instead of the optimum would result"
in s much smaller percent drag penalty. Also, for a given value of tca/c
it is evident from figure 12 that the pressure drag becomes less sensitive
to variations in trailing-edge thickness from the optimum as the Mach num-
ber is increased into the hypersonic regime,

As would be expected, the semioptimum sharp-trailing-edge profiles
(H = 0 in fig. 12) have somewhat less pressure drag than a structurally
equivalent circular-arc biconvex profile. The obgerved difference in
drag for thin airfoils at moderate Mach numbers is negligible for the
case of n =1, 0 = 0, since the optimum sharp-trailing-edge profile for
these conditions is very close to a circular-arc biconvex profile (if
linearized theory were employed the optimum sharp-trailing-edge profile
for n=1, 0 =0 would be a circular-arc biconvex profile). The
corresponding difference in drag for the case n =2, o = 1, however, is
significant since the optimum profile in this case has a midsection of
constant thickness, and hence is of considerably different shape, as
well as being considerably thinner than a structurally equivalent circular-
arc biconvex profile, '

Each of the curves for M, = 1.5 and 3 (figs. l2(a) and 12(b)) show
a minimum at some finite value of H, but the curves for tcg/c = 0.02 at

= 8 (fig. 12(c)) do not. If all other parameters were constant, this
trend would not be expected inasmuch as the optimum trailing-edge blunt-
ness for a given thickness ratio generally increases as the Mach number
is increased into the hypersonic range. (See reference 4,) The unexpected
trend is observed in the present examples because the variation of base
pressure with trailing-edge thickness is considered at M = 1,5 and 3
'where experimental measurements are available, but it is not considered
at Mg = 8 where, in the absence of experimental data, a constant base
pressure was arbitrarily assumed (one-tenth of the free-stream pressure,
irrespective of trailing-edge thickness). It is expected that if base
pressure measurements were made at My, = 8, they would show a dependence
on trailing-edge thickness Jjust as at the lower Mach numbers. Conse-
quently, it is believed that the actual curves for the thinner airfoils
at Mg =8 will be greatly different than shown in figure 12(c), although
the curves for the thicker airfoils are not expected to be significantly
different. If a constant base pressure corresponding to measured values
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on thick trailing edges were assumed at My, = 1.5 and 3, the curves -
for tca/c = 0.02 would rise starting from H = O even more steeply
than at M, = 8. This illustrates the necessity of considering the
dependence of base pressure on trailing-edge thickness in such an
analysis.® : '

The drag of the various optimum profiles (minimum points in fig. 12)
is seen to be less than the drag of a structurally equivalent circular-
arc biconvex profile by amounts varying between sbout 1 percent and
53 percent, depending on the values of n, 0, Mg, and tca/c. The largest
drag reduction occurs for the case of n =2, 0 =1, just as indicated
by the linearized theory of reference L. Likewise, the drag reduction
generally increases as the Mach number or the thickness ratio is
increased, as predicted by linearized theory.

CONCLUSIONS

1. TFor a given Mach number and structural requirement, the shape
and drag of the profile having the least possible pressure drag at zero
1ift, as computed from shock-expansion theory, can be determined readily
provided the base pressure is known from experiments and provided curves
of certain characteristic functions are available. (These functions K
are (Y, 8y, n), n(H, B0, n), H(80, Pb/Pws 0)s Jn(Bo), and op/ayt (80),
examples of which are presented in figures 4 to 7.)

2. A comparison of profiles determined by shock-expansion theory
and linearized theory indicates that the linearized theory may be used
with reasonable accuracy at Mach numbers up to infinity to determine the
ghape of the optimum profile, although it can be used only at moderate
supersonic Mach numbers to determine the drag.

3. Considerable deviations in profile shape from the theoretical
optimum can be made without increasing the drag excessively provided the
'Mach number is high, or the airfoil thickness ratio is relatively large.
Large drag penalties result, however, if a trailing-edge thickness
appreciably greater than the optimum is employed on a thin airfoil at
moderate supersonic Mach numbers.

4. Tt is necessary to- consider the experimentally observed depend-
ence of base pressure on trailing-edge thickness when calculating the
optimum-profile shape and drag of a thin airfoil.

Ames Aeronautical Laboratory .
National Advisory Committee for Aeronautics ‘ : -
Moffett Field, Calif., June 25, 1952 L
8[f the boundary.layer were laminar, the effect on the optimum shape of
the dependence of base pressure on trailing-edge thickness would be -
even greater, :
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APPENDIX A

METHOD OF CALCUIATING E(Y)

The singularity at Y =1 of the integrands in equatioun (9) causes
difficulty when directly evaluating such integrals numerically or graphi-
cally. This difficulty, however, can be circumvented by transforming
from Y as the integration variable to a new function fn(Y) defined as
follows: )

(a1)

¥ ay
(YY) =2 —m—
-[ J1-yo

With this transformation the equation for &(Y) becomes

£.(9) o
E(¥) fO [z | (a2)
| fkn '/.g.;.,. afy
[

In this equation the integrands and the ranges of integration are all
finite. The constant kpn is the same quantity as that used.in refer-

ence 4, namely,

(2 forn=1 |
n/2 forn =2
kn = fn(1) = { ' $ (A3)
1.4023 for n = 3
L 1 for n =w )

The functions fn(Y), apart from an additive constant, are likewise'thé
.same characteristic fqnctions as appeared throughout the analysis of
reference k4 when linearized supersonic airfoil theory was employed for P.

Thus, T
(2(1 - /1 - 10) forn =1
sin~t Y forn =2 i |
1.4023 - 374F(k,9P) for n'=3
Y forn = w J

~
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where F(k,P) is the incomplete elliptic integral of the first kind of
modulus k = sin 75° = 0.9659, and amplitude ‘

® = cos—aAQ/-§ -1+7Y)
| W3+1-7)

With the transformation to fp, the integrals in equation (A2) are
evaluated by first selecting a number of values of y!' ranging from yo!
to large negative values, For each y' the ordinate Y 1is computed
from equation (6), f, from equation (A4), and OP/dy' from the particu- -
lar airfoil theory. A plot is then made of BP/By' versus fn in order
‘to evaluate the integrals determining E(Y). ‘
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APPENDIX B
DETAILS OF METHOD OF DETERMINING THE SHAPE AND DRAG OF

AN OPTIMUM PROFILE BY SHOCK-EXPANSION METHOD

In the shock-expansion equations the leading-edge deflection
angle ©®, 1is a more convenient parameter to use than the given value
of I, hence the steps outlined below involve an iterative procedure,.

(1) Assume values of 8o and p,/p,
(2) Read value of H® from figure 6 and compute H

(3) Read values of E&(H) and n(H) from figure T; compute T from
equation (14) and s/c from equation (13) &

(4) Read value of (OP/dy')o from figure L, jn/(jn)ao = O

from figure 5; compute (jn)So - Ob from equation (37),
t/c from equation (15a)

(5) Compute I =T (t/2)B0

By comparison of the computed value of I with the given value, a new
value of 8y can be estimated. Also, from the computed value of h/e,
the experimental base pressure curves in figure 8 yield a new value of
Pb/Rn- By repetition of the above steps until the final computed value
of 1 is equal to the given value, and the final computed value of h/c
corresponds to the final base pressure assumed, all characteristics

(80, t/c, s/c, H, £(Y), (3P/3y")o, Jn, 8nd I) of the optimum profile are
determined., The pressure drag is then calculated from equation (17).
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of semioptimum profiles compared to a structurally equivalent circular-

arc biconvex profile.
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